The complex relationship between microbial growth rate and yield and its implications for ecosystem processes
نویسنده
چکیده
Growth rate and efficiency are fundamental traits of microbes that significantly influence how communities and ecosystems function. However the microbiological literature shows an apparent contradiction in the relationship between growth rate and yield (defined as the portion of consumed substrate that is converted into biomass or ATP). Pirt (1965) defined maintenance energy in growing bacterial cultures and predicted that slow growth rates would be associated with inefficient growth. This idea is consistent with studies of bacterial growth efficiency (BGE) in marine and aquatic ecosystems. However, a separate body of literature supports a negative relationship between growth rate and yield, and finds that this rate-yield tradeoff is central in evolution and the coexistence of species. The concept of yield arises in the terrestrial biogeochemical literature, but under the term, carbon use efficiency (CUE), where researchers are concerned with the rates of carbon dioxide (CO2) lost from the ecosystem through microbial respiration, and how the partitioning of plant litter into soil carbon (C) and CO2 is affected by climate change. Here the rate-yield tradeoff also has important implications. I believe the seemingly contradictory points of view expressed in the literature can be reconciled by considering the growth conditions, ecological strategies and level of organization treated by these various studies. This opinion article is not intended as a comprehensive review. Excellent reviews and analyses of various aspects of this literature exist (Russell and Cook, 1995; Del Giorgio and Cole, 1998; Ferenci, 1999; Carlson et al., 2007; Van Bodegom, 2007; Wang and Post, 2012; Sinsabaugh et al., 2013). These works have resolved much of the perceived ambiguity in the field, but to my knowledge no one has directly addressed the apparent paradox mentioned above.
منابع مشابه
The Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کاملThe Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کاملAn existence results on positive solutions for a reaction-diffusion model with logistics growth and indefinite weight
In this paper, using sub-supersolution argument, we prove an existence result on positive solution for an ecological model under certain conditions. It also describes the dynamics of the fish population with natural predation and constant yield harvesting. The assumptions are that the ecosystem is spatially homogeneous and the herbivore density is a constant which are valid assumptions for mana...
متن کاملDevelopment requirements of university –based Entrepreneurship Ecosystems in Iran
The analysis of Iran's knowledge economy suggests that the main weakness of the Iranian economy is the lack of processes of innovation and innovative entrepreneurship for the exploitation of new knowledge and technology. These processes fundamentally formed in the knowledge-based entrepreneurship ecosystems that did not developed in Iran economy and has not even known. Therefore, the purpose of...
متن کاملThe trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have ...
متن کامل